一、安徽最大铜硫矿床地质概要——论新桥铜硫铁矿床的成因(论文文献综述)
周国玉[1](2021)在《数据驱动的荞麦山铜硫钨多金属矿床元素迁移富集规律研究及找矿指示》文中研究指明大数据技术在地学领域的应用越来越广泛,大数据思维为地学研究开辟了新的思路。从数据出发,以数据驱动模式去分析地质问题,可能得到一些优于传统地学分析方法的结果,在矿床地化异常识别、元素迁移分布等方面数据驱动方法有着明显的优势。本文主要以南陵-宣城矿集区内的荞麦山铜硫矿床为研究对象,以便携式X射线荧光分析仪(PXRF)技术为数据获取手段,在系统收集整理了与研究区有关的地质资料、剖面资料、钻孔资料、论文文献以及研究报告等资料的基础上运用数据多元统计方法对荞麦山铜硫矿床的蚀变矿化、元素相关性、元素空间分布迁移规律等进行研究,并探讨了PXRF技术在荞麦山铜硫矿床岩芯测试方法上的选择。本文工作主要取得了以下成果:(1)通过测试方法选择、岩芯环境测试、数据对比等,建立了适合荞麦山铜硫矿床的PXRF测试数据采集流程。并以研究区一定岩石样品的实验室全岩数据为标准对PXRF数据进行了校正,得到了每种元素的校准方程。(2)对成矿元素Fe、S、Cu、W做含量垂向变化趋势投图,投图结果显示出元素高值异常区域与矿体区域基本吻合,此外Fe、S、Cu、W、Ca之间的相关性对矿物有较好的指示作用。(3)通过普通克里金插值分析荞麦山铜硫矿床各主微量元素的深度空间分布情况,结果显示:元素Ca、Mn、Mg、Ag、Hg、Mo、U、Se、Co、As、Zn的高值区域与Fe、S、Cu、W的高值基本对应,这些微量元素与成矿元素分布之间关系密切,可作为荞麦山矿床找矿的一个指示元素。元素Al、Si、V、Ti、Zr、Y、Rb、Nb、Cr、Th的高值区域与Fe、S、Cu、W的高值则呈现相反变化的情况,这些元素可作为矿体存在的负反馈因素。(4)主成分分析法获取了代表矿床岩性的元素组合,以Fe、S、Cu、W、Ca、Mn、Mg、Ag、Hg、U、Se、Co、As、Zn为正相关关系变化的元素组合代表着荞麦山铜硫矿床矿体段的元素集合,以AL、S、Ca、V、Fe、Co、Se、Rb、Sr、Mo、Ag、W、Hg、Pb组合代表着花岗闪长斑岩的元素集合。变异系数计算结果显示荞麦山矿床矽卡岩型矿体和花岗闪长斑岩中蚀变作用强烈,元素分布不稳定。(5)元素的富集指数计算显示荞麦山铜硫矿床在成矿过程中伴随着大量元素的迁移重组,在矿体段显着富集了元素Fe、Cu、S、W、Mn、Mg、Ag、Se、Co、Zn、Ca、Hg。研究结果进一步揭示了荞麦山铜硫矿床中元素的富集、迁移分布规律,并获取了与矿体密切相关的元素组合,这为该区域后续的找矿勘查提供了一定的指导依据。
施珂[2](2021)在《燕山期中酸性岩浆活动与金、铜多金属成矿作用的关系 ——以铜陵、皖北及皖东地区典型矿床为例》文中研究说明燕山期的岩浆活动是我国东部地区一次重要的岩浆作用,其与金、铜等矿床的成因联系更是其中重要的研究内容之一。金是具有重要经济价值的矿产资源,既可以作为贵重首饰同时也具备货币属性,如今更是广泛运用在航空、医疗及电子科技等众多领域,但近年来我国的金储备依然处于供不应求的状态,加大金矿床的勘探力度及对金多金属矿床的成因研究极为重要。铜陵矿集区、皖北蚌埠地区和皖东滁州-马厂地区是安徽省内重要的金、铜资源地,多年来也是国内外研究的重点地区。区内燕山期岩浆岩也极为发育,但燕山期岩浆活动与金、铜矿床的成因联系仍有诸多争议。特别是区内近年来发现的一系列新矿床,其与燕山期岩浆岩的关系尚未明确,仍需开展相关研究工作。本次工作重点选择上述地区近年来新发现的铜金矿床,如铜陵矿集区杨冲里金矿、胡村南铜钼矿、蚌埠地区江山金矿及滁州-马厂地区大庙山金矿等作为典型矿床,开展相关的成岩-成矿地球化学研究工作,拟解决成岩成矿的时空关系、成岩成矿物质来源及区域矿床成因等主要问题。杨冲里金矿的研究表明,成矿热液主要来自岩浆,该矿床与舒家店斑岩型铜矿为同一成矿系统,不同的成矿组合与成矿流体的成分比例改变有关,浅部可能还存在一期浅成低温热液成矿事件。胡村南铜钼矿的研究表明,成矿与区内的燕山期花岗闪长岩有关,成岩成矿时代基本一致,岩浆岩具有俯冲洋壳埃达克质岩的属性,斑岩阶段与矽卡岩阶段的成矿物质基本一致,但略有不同,矽卡岩阶段的地层物质参与更多,并建立了矿床成矿模式。江山金矿的研究表明,成岩成矿主要发生在早白垩世晚期,与该地区中生代第三次岩浆活动对应,Sr、Y等微量元素及Hf同位素指示了其具有壳源属性,并有幔源物质的加入,岩浆具有高氧逸度的特点,有利于金矿成矿,围岩为古老的变质基底,也具有较高的Au元素丰度,硫化物的微区地球化学特征及原位的S同位素也指示了岩浆与地层的共同作用是区内金矿的主要成因,复杂的破碎带构造提供了与区内其他金矿不同的储矿空间,形成了独特的矿体形态。大庙山的研究表明,区内的岩浆岩形成于130Ma左右,过去因为岩体的规模较小,常常忽略与成矿的关系,前人多认为该矿床为似卡林型。但锆石的微量元素显示岩浆具有较高的氧逸度,有利金成矿,硫化物的原位S同位素指示了一个多元成矿的特征,说明了地层与岩浆均参与了金的成矿,硫化物的微区地球化学特征则表明,岩浆在成矿过程中起到了至关重要的作用。在典型矿床研究的基础上,系统总结了区域成岩-成矿的研究工作,结合前人研究工作总结了三个地区燕山期岩浆活动与金、铜成矿的关系及区域矿床成因。认为三个地区燕山期的岩浆岩具有从南向北呈现逐渐年轻的趋势,均为高氧逸度的埃达克质岩,区内的Au、Cu多金属矿床均主要与这些燕山期的埃达克质岩有关。三个地区的岩浆源区略有差异,铜陵矿集区和滁州-马厂地区起源于俯冲洋壳的部分熔融,铜陵的燕山期岩浆岩特别是辉石闪长岩具有较多的幔源物质,滁州-马厂地区的燕山期岩浆岩混染了较多的壳源物质,其原因可能与铜陵矿集发育的深大断裂有关,蚌埠地区则起源于下地壳的部分熔融并有幔源物质的加入。同时,由于基底属性的差异导致了三个地区不同的成矿类型和赋矿层位,蚌埠地区的基底在形成时有一定的幔源物质加入,基底Au的元素丰度较高(地壳平均值的5倍),其基底围岩在成矿过程中也提供了大量的成矿物质,因此该地区的金矿多发育在太古代的变质基底中,成矿类型主要为受构造控制的造山型(石英脉型、构造蚀变岩型)金矿;铜陵矿集区和滁州-马厂地区的基底主要为壳源物质,具有幔源物质的岩浆为区内的Au、Cu矿床提供了主要的成矿物质和成矿反应的必要热能,因此矿体多发育在地球化学性质较为活泼的碳酸盐岩地层当中,成矿类型多为斑岩-矽卡岩型和岩浆热液型矿床。
陈一秀,杨丹[3](2021)在《长江中下游成矿带铜陵矿集区层控硫化物矿床成因研究进展》文中认为安徽铜陵矿集区是长江中下游成矿带内重要的多金属成矿区,该矿集区具有大规模的成矿作用和多种类型的复杂成矿系统演化,找矿潜力大,研究程度较高。区内广泛发育一系列层状硫化物矿床,其成因问题一直是中国矿床学界争议的焦点之一。文章从成矿年代学、成矿流体来源以及成矿物质来源等方面,对近半个世纪以来国内外学者对该矿集区内层控硫化物矿床成因研究的主要成果进行了初步归纳,并对对铜陵矿集区的成矿规律和成矿机制取得了一些新的认识:(1)铜陵矿集区的层状硫化物矿床的成矿过程包含海西期海底喷流沉积和燕山期岩浆热液叠加富集两个阶段,但是对于不同矿床的贡献是有差异的,具体到单个矿床需要结合多种方法进行详细分析;(2)燕山期岩浆热液交代改造、叠加富集成矿作用发生在早白垩世,大约持续20 Ma,峰值在140 Ma左右;(3)燕山期含矿岩浆从早到晚岩石地球化学上表现出由中基性→中酸性→中性的演化趋势,以岩浆活动高峰期(140 Ma±)的花岗闪长岩成矿规模最大,这种成矿偏好性是否与深部岩浆源区性质有关值得深入研究;(4)目前关于海西期喷流沉积作用对成矿的贡献的工作很少,期望对其有正确客观的评价。
单士锋[4](2020)在《安徽省铜陵凤凰山矿田成矿规律及找矿预测》文中研究说明铜陵凤凰山矿田是铜陵矿集区内主要矿田之一,位于近东西向铜陵-戴家汇构造-岩浆-成矿带的中部,大地构造演化经历活动-稳定-再活动的三个发展阶段。古生代至早三叠世沉积了海相、滨海-浅海相碎屑岩-碳酸盐岩及硅质岩建造,燕山运动发生强烈的岩浆活动与成矿作用,形成与岩浆侵入相关的成矿系列。本论文以凤凰山矿田为整体研究对象,采用地质调查、典型矿床剖析、岩体锆石U-Pb同位素精确定年,岩体主量元素、微量元素分析,矿物流体包裹体C、O、S、Pb同位素分析,辉钼矿Re-OS定年等主要工作手段。取得以下主要认识:凤凰山岩体属高钾钙碱性系列侵入岩,具有高Ba、高Sr,相对亏损Nb、Ta特征,,表面岩体的源岩既有壳源成分,又有幔混成分,属壳幔混合源。岩体同位素年龄变化范围在152.1~124.4Ma之间,与铜陵矿集区主要侵入岩体的形成时代一致。C、O同位素显示,成矿流体以岩浆水为主,成矿流体具有多源特征,即一部分来自岩浆,另一部分来自沉积碳酸盐围岩。辉钼矿Re-Os同位素模式年龄在140.9~142.2Ma之间,表面其成矿年龄,与凤凰山岩体成岩年龄基本一致。矿物S、Pb同位素特征显示成矿流体中的硫具有岩浆来源特征。凤凰山矿田以岩浆成矿系列为主,以接触交代矽卡岩型为主,矿床主要围绕凤凰山岩体呈“一圈一带”分布,具有水平与垂直分带性,主要矿体赋存于岩体正接触带,外带原则上分布在热变质圈内,内带赋存于捕掳体、岩体裂隙带中。综合凤凰山矿田地质、地球物理、地球化学的信息开展预测及圈定找矿靶区,共圈定一级找矿靶区7个,二级找矿靶区5个,并对靶区进行了评价。选择具有潜力的靶区进行钻探验证,取得较好的找矿成果。
马宏[5](2019)在《安徽铜陵新桥铜硫铁矿床地质及矿石矿物特征》文中研究指明新桥Cu-S-Fe多金属矿为一复合成因矿床,其地质特征与成矿过程在长江中下游成矿带具有代表性。本文在充分收集并归纳总结了前人研究成果和相关资料的基础上,对新桥Cu-S-Fe矿矿区进行了详实的野外调查、岩相学观察和典型样品实验分析,并论证了该矿床的地质特征、矿物学和矿床地球化学特点,阐明了新桥铜硫铁矿床中涉及的成矿条件以及成矿作用过程。新桥Cu-S-Fe矿床主矿体主要赋存于上泥盆统与中石炭统地层之间的层间破碎带以及矶头复式岩株与碳酸盐岩地层附近的蚀变带中。
施珂,杜建国,万秋,陈芳,蔡杨,曹荆亚,吴礼彬,王利民,谭德兴[6](2019)在《安徽铜陵矿集区中生代侵入岩体年代学研究及其成矿指示意义》文中指出基于前人在铜陵矿集区获得的大量高精度同位素定年数据,本文补充测定了研究程度相对较低的棋子坑、瑶山、荷花塘等11个小型侵入体的LA-ICP-MS锆石U-Pb年龄,年龄分布在147~131 Ma之间。通过对区内成岩-成矿时代进行系统分析,提出了该区为一燕山期陆内"瞬时大规模成矿作用"形成的大型矿集区。区内燕山期成矿岩体主要包括花岗闪长岩类、石英(二长)闪长岩类和辉石(二长)闪长岩类等3类中酸性侵入岩,其成岩时代主要集中在152~130Ma之间,其中,花岗闪长岩集中在148~137 Ma、石英(二长)闪长岩在152~130 Ma、辉石(二长)闪长岩在150~134 Ma,区内主要矿床中获得的辉钼矿Re-Os成矿年龄分布在141~137Ma,成岩与成矿时代相差约10Ma以内,且成矿年龄具有自东向西逐渐变新的特征,区内相邻矿田成矿时代相差2Ma左右。铜陵矿集区在141~137 Ma的短时限内三次幕式大规模成矿作用为全球陆内岩浆成矿作用中所罕见。
戴荔果[7](2019)在《青海省滩间山—锡铁山地区金铅锌成矿系统》文中研究指明锡铁山-滩间山地区位于青藏高原柴达木盆地北缘构造带的西段。柴北缘构造带北接祁连地块,南邻柴达木地块,东西分别以哇洪山-温泉断裂和阿尔金走滑断裂同阿尔金-敦煌地块和秦岭造山带为界。该构造带内自北向南又以鱼卡-乌兰断裂为界,分为两个构造单元,北部为欧龙布鲁克陆块,南部为鱼卡河(沙柳河)超高压带。乌兰-鱼卡断裂两侧夹杂分布着滩间山群岛弧火山-沉积岩及蛇绿岩残片。柴北缘先后经历了加里东期、海西期和印支期造山作用,地质构造复杂,是我国西部重要成矿带之一,成矿潜力巨大,已发现有锡铁山超大型铅锌矿床和滩间山大型金矿床等。该区自然条件恶劣,交通不便,致使全区研究程度相对较低,前人虽对该区成矿地质背景和主要矿床类型研究取得不少成果,但均未能从成矿系统的角度进行探讨,影响到对该区成矿规律的认识。本文以成矿系统理论为指导,以滩间山-锡铁山地区的金铅锌矿床研究为切入点,以岩浆-成矿作用为主线,系统性分析了锡铁山铅锌矿、青龙沟金矿、滩间山金矿等典型矿床的矿床地质特征、成矿物质来源、成矿流体来源、矿床成因类型及成矿时代等多方面特征,并开展了与成矿有关的岩浆岩的地质特征、岩相学、岩石地球化学、Sr-Nd-Pb-Hf同位素地球化学、锆石微量元素地球化学及锆石U-Pb年代学等多方面的研究。以此为基础,厘定了研究区成岩成矿的地球动力学背景,初步建立了研究区金铅锌成矿系统及亚系统,探讨了金铅锌成矿系统的时空分布规律及其成矿作用过程,建立了区域成矿系统演化模式,指出了找矿方向。滩间山-锡铁山地区区域构造演化大致经历了:(1)古元古代-新元古代,陆块初步形成;(2)新元古代,大洋演化阶段;(3)早-中加里东期,柴北缘洋持续性扩张、俯冲,并形成沟-弧-盆体系。晚加里东期,柴达木陆块碰撞、深俯冲欧龙布鲁克陆块,并闭合最终进入后造山阶段;(4)海西期,宗务隆洋打开、形成有限洋盆,至晚海西期-印支期,西向俯冲于欧龙布鲁克陆块之下,其后,洋盆闭合,陆陆碰撞,进入后造山阶段;(5)晚中生代-新生代,青藏高原隆升。在其演化的过程中,形成了颇具特色的金铅锌成矿系统。滩间山-锡铁山地区金铅锌(铜)成矿系统中赋矿岩体的成岩-成矿时代与动力学背景得以约束:滩间山金矿床赋矿闪长玢岩(1768±19Ma、444.8±8.3Ma、255±3Ma)、野骆驼泉金矿床赋矿花岗闪长岩(283.5±3.1Ma)、红柳沟金矿床赋矿花岗岩(441.3±3.5Ma),及锡铁山铅锌矿床侵入滩间山群的花岗岩(445±2.3Ma),与已报道成矿年龄相对应。滩间山金矿床闪长玢岩锆石年龄谱系指示其主要源于欧龙布鲁克地块,且显示欧龙布鲁克地块存在太古宙基底,并分别响应晚新太古代陆块汇聚事件、Rodinia超大陆汇聚裂解事件、加里东造山和晚海西-印支造山事件。锡铁山铅锌矿床花岗岩的成岩时代和火山岩的地球化学特征限定了赋矿滩间山群火山-沉积建造的地层层序和构造背景,滩间山群d岩组的成岩构造环境并不相似于a岩组,其可能不具备类似成矿潜力。滩间山-锡铁山地区存在加里东期铅锌金成矿系统(包括早加里东期铅锌(铜)成矿亚系统和晚加里东期金成矿亚系统)、海西期铅锌(铜)成矿系统和印支期金成矿系统。其分别形成了:与早加里东期盆地演化有关的铅锌(铜)成矿亚系列、与晚加里东期岩浆活动有关的金成矿亚系列、与海西期岩浆活动有关的铅锌(铜)成矿系列,及与印支期岩浆活动有关的金成矿系列。典型矿床的研究表明,该区部分地段存在晚期成矿系统对早期成矿系统的叠加改造,形成叠加型矿床,如锡铁山铅锌矿床和双口山铅锌矿床为喷流沉积-热液叠加型矿床。锡铁山矿床的成矿作用经历了:早加里东期的喷流沉积成矿,及其后的变质变形改造期和热液叠加期。喷流沉积成矿期形成了以层状、似层状为主的铅锌矿体,矿石常具胶状结构和条带状构造。变质变形改造期表现为矿体的边部具有不规则的“边刺”、“边瘤”,矿石变质组构发育,常见变晶结构、碎裂结构、花斑状构造及块状构造。前两期矿体一起产于主含矿层或次含矿层中。热液叠加期矿石多为脉状结构,矿物晶粒加粗,矿脉边侧常见有厚度不大的硅化、绢云母化、方解石化等热液蚀变。锡铁山矿床铅同位素组成表明铅为壳幔混合铅,指示深部火山岩与上部正常沉积岩铅的混合;硫同位素组成指示硫主要源于赋矿火山岩。氢氧和碳氧同位素特征表明成矿流体以岩浆热液为主,混合部分海水、变质水及浅源水。锡铁山矿床的流体包裹体研究显示,喷流沉积期网脉状矿石(管道相)的成矿流体均一温度峰值为180℃240℃和270℃330℃,盐度126wt%NaCl eqv.(集中于412 wt%和2123 wt%NaCl eqv.);喷流沉积期纹层-似层状矿石(海底喷流沉积相)的成矿流体均一温度峰值250℃260℃,盐度集中于12.514 wt%NaCl eqv.;晚阶段无矿石英的流体包裹体均一温度峰值165℃175℃,盐度集中于68wt%NaCl eqv.。喷流沉积期的流体压力,集中于100bar内,少部分100200bar,成矿深度0.41.4km,多数在1km内,成矿流体密度多为中-低密度流(密度<海水),少数网脉状矿体中流体为高密度流(密度>海水,或接近于海水密度线)特征。研究表明,成矿流体从下部网脉状管道矿体至上部层状矿体,温度下降,盐度趋于集中,密度下降,反映其与海水系统较强的混合均一作用,且发生了沸腾(同一视域见不同类型包裹体,隐爆角砾岩,及盐度呈两端元特征14wt%及1226 wt%NaCl eqv.),为成矿组分沉淀卸载的过程,至最晚阶段无矿流体的温度、盐度、密度和压力则明显降低。青龙沟金矿床是晚加里东期岩浆活动有关的金成矿亚系统形成的产物,矿体主要赋存于中元古代万洞沟群沉积地层和石英闪长玢岩脉中。矿石类型有变砂岩型、大理岩型、蚀变闪长玢岩型、绢云千枚岩型、石英脉型等。矿石矿物主要有(含砷)黄铁矿、毒砂、自然金。围岩蚀变类型主要有黄铁绢云岩化、硅化、碳酸岩化等。成矿阶段划分为,I少硫化物石英脉阶段;II石英-绢云母-黄铁矿多金属硫化物阶段;III石英-碳酸盐阶段,其中II、III为主成矿阶段。青龙沟矿床主成矿阶段铅和硫同位素特征表明,成矿物质来源为深部岩浆与浅部万洞沟群混合的产物。氢氧同位素特征表明成矿流体主要为岩浆热液,混入部分变质水、大气水。成矿流体成分分析表明,包裹体气相主要为H2O、CO2和N2,及少量CO、CH4、H2;液相主要为H2O、SO42-、Cl-、Na+、Ca2+、Mg2+,及少量K+、F-,属H2O-NaCl-CO2-CH4(N2)体系。青龙沟矿床成矿流体的均一温度范围为140℃360℃,盐度415wt%和2122wt%NaCl eqv,密度0.720.99g/cm3。其中,I、II、III阶段的均一温度分别集中于:280℃350℃、240270℃和140℃210℃;盐度分别为1115wt%和2122wt%、710wt%,及46wt%NaCl eqv.;以成矿压力算得成矿深度分别为:1.53.6km,1.42.4km和1.21.7km。主成矿阶段流体包裹体特征显示,同一视域纯液相+富液相+富气相共存,不同充填度气液相包裹体群状分布,表明流体发生了沸腾。滩间山金矿床是与印支期岩浆活动有关的金成矿系统的产物,矿体主要赋存于万洞沟群炭质千枚岩片岩和蚀变闪长玢岩脉中。矿石矿物主要有含砷黄铁矿、黄铁矿和毒砂。主载金矿物为黄铁矿、石英和毒砂。围岩蚀变多见硅化、绢云母化、黄铁矿化。主成矿期岩浆热液期可分为:I少硫化物-石英脉成矿阶段、II黄铁矿-石英脉成矿阶段和III碳酸盐-石英脉成矿阶段。其中I、II为主成矿阶段。滩间山矿床主成矿阶段矿石的硫同位素组成表明硫为岩浆硫源;铅同位素组成表明铅为深源和上地壳铅的混合;碳氧同位素组分表明碳主要为岩浆岩源,混和大理岩碳源。成矿流体成分研究表明,包裹体气相主要为H2O和CO2,及少量CO、N2、CH4和H2;液相成分主要为H2O,SO42-、Cl-、Ca2+、Na+、Mg2+,及少量K+、F-、NO3-等。成矿流体属H2O-NaCl-CO2-CH4(N2)体系,富CO2,及Cl->F-,表明其主要为岩浆热液,混合部分变质水、大气水。滩间山矿床成矿流体氢氧同位素特征表明,其主要为岩浆热液,混合变质水、大气水。三个阶段成矿流体的均一温度分别集中于300℃380℃,140℃200℃和200℃280℃;盐度分别集中于68wt%,810wt%和68wt%NaCl eqv.;流体密度分别为0.660.99/cm3,0.921.04g/cm3和0.780.98g/cm3;以成矿压力算得成矿深度分别为1.194.12km(均值2.46km),1.282.4km(均值2.0km),及1.121.33 km(均值1.23 km),表明压力和深度由早阶段-主成矿阶段-晚阶段依次递减。滩间山金矿床赋矿闪长玢岩的成岩条件和成矿潜力研究表明,三期岩浆(1768±30Ma、445±19Ma和255±3Ma)的氧逸度值均较高(Ce/Ce*N和lgfO2值多在FMQ氧逸度缓冲线之上),具较好的成矿潜力,且均出现了至少一次晚期熔流体的再注入、升温过程,其溶蚀了先存锆石,改变了锆石微量元素的演化趋势(Dy、Th/U、Ce/Dy值上升(或Th/U、Ce/Dy值范围扩大),Hf/Y、Yb/Nd、Yb/Dy值减小(或Yb/Dy值范围缩小)),使氧逸度值发生变化,导致前两期氧逸度值升高而后一期降低。后者的降低可能是晚期熔流体演化为含高挥发分、携巨量金属元素的成矿流体,并最终大规模沉淀成矿的反映,暗示了金矿床的主成矿期为印支期。总结了研究区加里东期金铅锌(铜)成矿系统(包括早加里东期铅锌(铜)成矿亚系统和晚加里东期金成矿亚系统)、海西期铅锌(铜)成矿系统和印支期金成矿系统的时空分布规律,建立了区域成矿系统演化模式。早加里东期柴北缘洋壳俯冲造成的弧间-弧后盆地内的三级盆地-四级凹陷,控制了早加里东期铅锌(铜)成矿亚系统的分布;晚加里东期柴北缘洋壳俯冲形成的火山弧型花岗岩和其后柴达木陆块碰撞、深俯冲欧龙布鲁克陆块形成的后碰撞花岗岩的分布及伴生的断裂、褶皱构造,控制了晚加里东期金成矿亚系统;海西期晚泥盆世-早石炭世,柴北缘以北的宗务隆洋盆开始打开,到中石炭世-早二叠世形成有限洋盆。此阶段柴北缘地区处于造山后伸展构造环境,普遍发育与造山带去根有关的一期海西期花岗岩浆活动,并形成伴生的断裂和褶皱构造,控制了海西铅锌(铜)成矿系统;印支期,宗务隆有限洋盆俯冲欧龙布鲁克陆块及其后的陆陆碰撞等造山作用过程形成的印支期火山弧型花岗岩和其后后碰撞花岗岩的分布及伴生的断裂、褶皱构造,控制了印支期金成矿系统。并且存在晚期成矿系统对早期成矿系统的叠加改造,形成叠加型矿床。在系统研究典型矿床的基础上,建立了锡铁山式铅锌矿找矿模型和滩间山式金矿找矿模型。指出了区域金铅锌矿床找矿的远景区:滩间山-青龙沟金找矿远景区、绿梁山-双口山铅锌金铜找矿远景区、锡铁山铅锌金找矿远景区、赛什腾山西段金铜找矿远景区等。
肖鑫[8](2019)在《铜陵矿集区斑岩-矽卡岩型铜金矿床成矿作用研究》文中认为铜陵矿集区是长江中下游成矿带中最重要的铜金多金属聚集地,矿区内以发育众多“广义矽卡岩型”铜金多金属矿床而闻名,是“层控矽卡岩型’”和“复合叠加成矿”理论的发源地。区内的铜金多金属矿床以矽卡岩型矿体为主,次为层状/似层状硫化物矿体,同时深部勘探揭示这些铜金多金属矿床深部存在斑岩矿化。然而目前有关该区成矿多样性的成因机理及其主控因素还仍存在一些问题有待深入研究,尤其是层状硫化物矿体的成矿物质来源与成因和斑岩-矽卡岩-层状硫化物之间的成因联系仍然存在争议。新桥矿床和冬瓜山矿床是铜陵矿集区内产出斑岩型-矽卡岩型-层状硫化物矿体的典型代表,因此,论文选择该矿集区内的新桥和冬瓜山矿床开展系统的斑岩-矽卡岩成矿作用研究。取得了如下主要的进展和认识:新桥和冬瓜山矿床的岩浆锆石、斑岩热液蚀变矿物(榍石和金红石)和矽卡岩矿物(石榴子石)的U-Pb同位素定年结果显示,成岩时代与斑岩-矽卡岩蚀变成矿时代一致,约为140Ma左右,为早白垩世典型的斑岩-矽卡岩型Cu-Au矿床。新桥和冬瓜山矿床发育不同类型的岩浆岩,主要类型为辉石闪长岩和石英(二长)闪长岩,地质特征和岩浆岩矿物地球化学特征指示石英(二长)闪长岩为新桥和冬瓜山矿床的主要成矿岩浆岩。岩浆锆石Ti温度计计算得出辉石闪长岩的结晶温度较高为828℃,而成矿岩体石英(二长)闪长岩的结晶温度约为784℃。岩浆锆石的Ce/Nd、Ce4+/Ce3+和Eu异常特征指示石英(二长)闪长岩具有较高的氧逸度和富含岩浆水特征。同时岩浆磷灰石成分表明石英(二长)闪长岩具有较高的SO3、Cl的含量和较低的F/Cl比值,而辉石闪长岩则显示相对高F特征和较高的F/Cl比值。新桥和冬瓜山矿床发育典型的斑岩和矽卡岩蚀变。其中斑岩蚀变主要为钾长石化(少量黑云母化)、绢云母化和青磐岩化。斑岩-矽卡岩热液蚀变阶段产出了大量与蚀变矿化相关的热液矿物(如磷灰石、榍石、金红石、磁铁矿、黄铁矿和石英),这些热液矿物的矿物学和微量元素特征对了解斑岩-矽卡岩矿化过程中岩浆-热液流体的成分和演化过程提供了直接证据。新桥和冬瓜山矿床钾化蚀变阶段发育磷灰石、金红石、榍石和石英等热液矿物,这些矿物的稳定存在和微量元素特征指示钾化阶段为中高温阶段,热液磷灰石和金红石的主微量元素特征指示钾化阶段流体中主要存在Cl-、F-、OH-、CO32-、PO42-、SO42-、REE3+和具有较高的fS2、fO2条件;并且热液榍石的HFSE和V元素变化和热液氟磷灰石的存在,指示早期钾化阶段的流体为富F且偏碱性流体。然而冬瓜山矿床钾化阶段存在榍石-磁铁矿/钛铁矿组合及相应的稀土元素含量变化可能指示了冬瓜山矿床钾化阶段存在局部的氧逸度fO2变化。绢云母化阶段大量黄铁矿的沉淀指示该阶段流体具有较高的fS2,而该阶段的热液磷灰石极度亏损REE元素指示其可能有外界流体加入,导致流体温度降低且pH发生变化。青磐岩化阶段主要发育绿帘石、绿泥石和少量热液磷灰石/榍石,金属硫化物发育较少。冬瓜山矿床矽卡岩阶段产出热液磷灰石成分指示早阶段矽卡岩与钾化阶段具有相似的流体性质;而外矽卡岩带的热液磷灰石和榍石均存在明显的振荡环带结构指示存在流体振荡和较强的水岩作用,同时新桥矽卡岩阶段磁铁矿(尤其远端矽卡岩)富集Mg、Mn和Sn同样也指示矽卡岩阶段存在明显的流体交代和强烈的水岩反应。新桥和冬瓜山矿床的矽卡岩存在内外矽卡岩分带,内外矽卡岩带主要以石榴子石矽卡岩为主,其中内矽卡岩带主要以钙铝榴石为主,钙铝榴石的微量元素(REE、Eu)特征指示其主要形成于早阶段的岩浆热液高温流体,流体以中性为主且形成于近封闭环境;而外矽卡岩带的石榴子石Fe/Al成分变化较大,存在多阶段石榴子石且显示了复杂的矿物内部结构和化学成分,表明外矽卡岩带的形成过程中存在多阶段流体活动和存在流体振荡。新桥和冬瓜山矿床不仅发育斑岩-矽卡岩型矿体,而且层状/似层状硫化物矿体作为最主要矿体存在,然而关于层状矿体中胶状黄铁矿的成因依然存在争论。本论文研究发现,手标本尺度上胶状黄铁矿整体呈现了典型的热液脉状特征,并且存在穿切和交代矽卡岩矿物(如石榴子石和辉石)和金属矿物(磁铁矿、磁黄铁矿)现象。在地球化学特征方面:胶状黄铁矿的原位S同位素与斑岩-矽卡岩蚀变矿化相似为岩浆热液来源,微量元素成分显示其与远端矽卡岩中黄铁矿的成分特征相似,而于区域泥盆至三叠系沉积岩中原生沉积黄铁矿和世界上典型的SEDEX型矿床中的黄铁矿均存在显着的差异。因此,胶状黄铁矿的地质特征和地球化学特征皆指示其为热液成因,而非来源于原生或喷流沉积,且为矽卡岩演化过程中的产物,其形成于磁铁矿和磁黄铁矿之后并被后期黄铁矿、黄铜矿、闪锌矿和方铅矿交代。上述特征表明了层状硫化物矿体为早白垩世斑岩-矽卡岩成矿系统的一部分,岩浆热液流体在接触带与碳酸盐岩反应形成矽卡岩型矿体,而岩浆热液在远端泥盆-石炭系沉积间断面界面与上赋还原性碳酸盐岩发生水岩反应作用,通过歧化反应并且快速冷却结晶而形成了胶状黄铁矿,同时后期岩浆热液流体持续活动叠加于胶状黄铁矿之上共同组成了层状硫化物矿体,且石炭-泥盆系沉积间断面为流体通道。微量元素结果揭示层状硫化物矿体的成矿物质由岩浆热液流体和围岩共同制约,围岩提供了部分Cu、Au成矿物质,而主体则来源于与斑岩-矽卡岩蚀变矿化有关的岩浆热液。铜陵矿集区内同时还发育不同类型矽卡岩型矿化,本次工作发现成矿岩体的岩浆磷灰石的微量元素(如Eu/Eu*、Ce/Ce*、REE、Mn、Fe、Sr、Cu和Zn)能够判别不同斑岩-矽卡岩型矿化类型,例如矽卡岩型Pb-Zn矿化(姚家岭)相关的岩浆磷灰石主要富集Mn、Fe、Sr;与矽卡岩型Au矿化(朝山)有关的岩浆岩中磷灰石富集Cu和Zn;而斑岩-矽卡岩型Cu-Au矿化(新桥和冬瓜山)有关岩浆磷灰石的成分介于两者之间。铜陵矿集区斑岩-矽卡岩型矿床与岩浆弧环境斑岩型矿床地质特征存在一定差别和联系,尤其是在围岩的性质和矿化蚀变类型方面存在差别,而岩浆岩的类型和性质相似(均为中酸性岩浆岩且具有高氧逸度、富含挥发份、富水和高温特征)。通过对比发现铜陵矿集区斑岩-矽卡岩型矿床受碳酸盐岩地层影响因素较大,矽卡岩和层状硫化物的形成过程中围岩提供了部分的成矿物质,而陆缘弧斑岩矿床主要受控于俯冲背景及相关的岩浆作用。
聂利青[9](2019)在《长江中下游成矿带钨的成矿作用研究》文中指出钨是一种战略金属,被誉为“工业食盐”,是重要的难熔稀有金属之一。我国是全球钨储量最大的国家,占全球储量的52%(美国地质调查局2018年数据)。同时,我国也是全球钨生产和消费第一大国。关于钨矿床,特别是矽卡岩型钨矿床,前人已开展广泛的研究如含矿岩体、成矿条件等方面,取得了丰硕的成果,但是对于钨矿床与其他金属元素组成的多元素矿床(如钨、铜、铁矿床)的研究则相对薄弱,勘探新发现越来越多的钨矿床呈现与铜金、铁伴生的现象或是铜金、铁矿床发育钨矿化。钨被认为是典型的壳源元素,而铜铁等元素通常为幔源,它们出现在相同的矿床,是什么样的过程和条件等造成的,已成为热液矿床成因研究的重要科学问题。因此,选择既有钨矿床又有铜铁矿床的地区开展详细对比研究对探讨解决这个问题显得尤为重要,长江中下游成矿带正是开展钨矿床和铜、铁矿床的成矿岩体专属性和成矿条件异同性研究的理想场所。长江中下游成矿带是我国重要的铜铁金多金属矿床聚集区,是“层控矽卡岩矿床”和“斑岩-矽卡岩复合成矿理论”的发祥地,是长期研究的热点地区。相比于成矿带内铜金、铁矿床的研究程度,成矿带中钨矿床的成矿作用研究明显薄弱,近年来长江中下游成矿带新发现的钨矿床(化)为该成矿带的研究提出了新的课题。长江中下游成矿带内达到大型规模的钨矿床有:东顾山矿床、阮家湾矿床、桂林郑矿床、高家塝矿床,另外,在铜山口大型铜金矿床和龙桥大型铁矿床中也发育钨矿化。为了理清成矿带内钨矿床的成岩成矿时代、成矿岩体类型及源区、钨成矿系统及其与成矿带内的铜铁金成矿系统深部过程的异同,本文选取长江中下游成矿带上述四个钨矿床作为代表,结合成矿带内的含钨矿床如铜山口矿床,基于前人研究成果,通过野外地质调查和室内分析测试,对长江中下游成矿带钨成矿作用开展了系统的研究工作,获得的主要认识和进展如下:东顾山矿床是长江中下游成矿带内近年新发现的钨矿床,也是本次工作重点研究对象,本文对该矿床的地质特征和地球化学特征开展了详细工作,内容如下:东顾山矿床是北亚带内目前探明的大型矽卡岩型钨矿床,赋矿地层为奥陶系碳酸盐岩地层,成矿岩体为黑云母花岗岩,矿体形态主要呈似层状、平缓透镜状,矿体赋存在岩体与围岩的接触带。该矿床成矿流体为中高温度、中低盐度,成矿流体在成矿期(氧化物阶段)已发生岩浆水与大气水的混合,在石英硫化物阶段大气降水比例约为40%,流体混合比例更显着。黄铁矿等硫化物的δ34S值为4.39‰~6.00‰,高于幔源硫,略低于赋矿地层硫值,表明东顾山钨矿床硫源为地层硫和岩浆硫混合。由大理岩到岩体依次发育脉状、浸染状和块状的石榴子石,且颜色逐渐加深。Grt-1(脉状):Gro7i-80Adr17-27Pyr1-3;核部和边部均富集重稀土,有微弱的铕负异常;Grt-2(浸染状):Adr35-83Gro15-60Pyr2-6,核部和边部均富集轻稀土,有微弱的铕正异常;Grt-3(块状):Adr97-1o0Gro0-1Pyr0-2,核部和边部显着富集轻稀土,有明显的铕正异常。东顾山矿床的石榴子石从Grt-1到Grt-2再到Grt-3经历了从扩散交代作用到平流交代作用的转变,成矿流体由中性演化至中酸性,氧逸度逐渐升高并达到峰值。东顾山矿床中白钨矿铕异常δEu和Mo6+含量演化特征均指示成矿流体氧逸度逐渐减弱。白钨矿富集HFSE且Nb/La值>1,指示成矿流体富集F挥发分。白钨矿的εNd(t)范围为-17.7~-16.4,87Sr/86Sr值为0.70957~0.71113,指示东顾山矿床的成矿物质来自地壳(董岭式基底)。该矿床黄铁矿划分为两个大类:Py1采于钨矿体(深部),Py2采于铅锌矿体(浅部),又根据酸蚀后的岩相学特征将这两类黄铁矿分为两个亚类(即Py1a/1b和Py2a/2b),Py1a具有高Co元素含量同时亏损其余微量元素的特征,而Py1b相对富集Ni、Cu、Pb、Bi、Zn和As元素。Py2a亏损Co元素和Ni元素,但是富集As元素,Py2b除了更加富集As元素外,Pb、Bi、Cu、Zn、Au和Ag也呈现富集特征。同一类黄铁矿中(Py1或Py2)差别小,但是这两类黄铁矿的铅同位素范围大(208Pb/204Pb值范围为36.587~38.248),显示扬子上地壳(董岭式基底)为钨矿化提供了物质来源。东顾山矿床与长江中下游成矿带及邻区鸡头山矿床、大湖塘矿床中的白钨矿同位素范围差别大,分别落入对应区域的基底同位素范围,指示区域钨矿床的成矿物质来源除了江南式基底(双桥山群)外,董岭式基底可以为钨矿床提供成矿物质,因此南钨北移的界限可以越过长江深断裂。东顾山矿床成岩成矿时代分别为99.9±1.7~99.7±1.5 Ma和97.22±0.70 Ma,指示成矿带在130Ma的大规模成矿作用以后,在100 Ma发生了一次新的成矿事件。该矿床的成矿时代明显晚于前人提出的长江中下游成矿带铜铁金矿床成矿时代,据此,将成矿带的燕山期成矿时代范围重新确定在145~97 Ma之间。并进一步划分了三阶段钨成矿作用:146~143 Ma、127 Ma和97 Ma,在成矿带的铜主成矿期(140Ma)之前和铁成矿期(130Ma)之后均有钨成矿事件发生。长江中下游成矿带与钨矿床有关的岩体均具有右倾的稀土配分模式,早、晚阶段成矿岩体有微弱的铕负异常(平均值为0.88和0.78),中阶段成矿岩体有明显的铕负异常(平均值为0.18)。且均富集Rb、Th、U等LILE,亏损Nb、Zr、Ti等HFSE,弱亏损Sr、P、Eu、Ti,具有高的K/Rb和Zr/Hf 比值以及低的Sr/Y比值,表明长江中下游成矿带与钨矿床有关的岩浆分异演化程度低,岩浆氧逸度高,从长江中下游成矿带到钦杭成矿带再到南岭成矿带,岩浆的分异演化程度逐渐加强,岩浆氧逸度逐渐降低。长江中下游成矿带钨矿床成矿岩体的εNd(t)、(87Sr/86Sr)i变化范围很大、数据点离散,尤其是早晚两阶段岩体与中阶段岩体(87Sr/86Sr)i差别极大,显示了岩浆来源的差异性,即中阶段岩体(即桂林郑岩体,位于南亚带)有更多的扬子上地壳(江南式基底)物质加入。相比于早阶段成矿岩体(即阮家湾岩体和高家塝岩体,分别位于中亚带和南亚带),晚阶段岩体(即东顾山岩体,位于北亚带)具有较低的(87Sr/86Sr)i和较低的εNd(t)和更负的锆石εHf(t)值则可能指示晚阶段成矿岩浆有更多的地壳物质(董岭式基底)加入。通过对鄂东南矿集区成铜岩体、成铁岩体和成钨岩体的锆石微量元素研究发现不同岩体成矿专属性不同,其中,阮家湾钨矿床的成矿岩体锆石富钨元素(平均值为1.14ppm);铜山口铜矿床和铜绿山铜铁矿床的成矿岩体锆石富铜元素(平均值分别为0.80和1.23ppm)。铜山口铜矿床和铜绿山铜铁矿床的成矿岩体氧逸度最高(锆石Ce4+/Ce3+平均值分别为207.5和263.6),金山店铁矿床次之(锆石Ce4+/Ce3+平均值为189.0),阮家湾钨矿床的成矿岩体氧逸度最低(锆石Ce4+/Ce3+平均值为71.7)。在矿集区尺度,鄂东南矿集区横跨南北两个基底,其区域地球化学特征和成矿作用具有钨-铜-铁过渡的特点。岩浆的地幔与地壳加入的比例和类型不仅对氧逸度有明显的控制作用,而且决定了岩浆的含矿性,岩浆源区的差异很可能是导致鄂东南矿集区不同岩体含矿性差异的根本原因。东顾山钨矿床、阮家湾钨矿床、高家塝钨矿床、桂林郑钨矿床和铜山口铜金矿床中白钨矿的稀土配分模型呈现不同程度的轻稀土富集和铕负异常特征,均富集HFSE,Nb/La值约为1.217~52.455,指示这四个钨矿床的成矿流体富集F挥发分;铜山口铜金矿床成矿流体富C1挥发分,即成矿带内形成钨矿床的流体富集F挥发分,形成铜矿床的流体富集C1挥发分。矽卡岩型矿床中白钨矿的铕异常δEu通常<1,且富集LREE和Mo元素;石英脉型钨矿床中白钨矿铕异常δEu变化范围大(>10或<1),且亏损LREE和Mo元素;斑岩型矿床中的白钨矿铕异常δEu变化范围大,且中等富集LREE和Mo元素,故白钨矿的(La/Lu)N和Mo/δEu图解可以作为判断热液矿床类型(矽卡岩型、斑岩型和石英脉型)的参考指标。由于长江中下游成矿带受到华北和大别山的强烈“阻挡”,很可能发生了“陆内俯冲”,上下地壳发生脱耦,岩石圈叠置增厚。长江中下游成矿带的董岭式和江南式基底富含钨等组分,是形成原始含矿岩浆的物质基础。随着岩浆的结晶分异,钨等成矿元素聚集在岩浆房的顶部,并上升侵位在古生代白云岩、灰岩沉积地层中,含矿热液与碳酸盐岩反应形成长江中下游成矿带的矽卡岩型钨矿床。在此研究基础上,建立了长江中下游成矿带钨矿床成矿模式,“南钨北扩”将成为目前及以后钨矿勘查和钨工业布局的新方向。
刘一男[10](2019)在《安徽庐枞盆地铁矿床成矿系统和成矿模式研究》文中认为长江中下游成矿带位于扬子板块北缘,是我国最重要的陆内铜金铁多金属成矿带之一。庐枞盆地是成矿带内以陆相火山岩型和矽卡岩型铁矿床为特色的矿集区,区内地质勘查研究历史悠久,参与人员众多,成果积累丰富。2013年以来,庐枞盆地深部勘探得重大突破,在罗河铁矿床主矿体以下600米又发现了新的厚大铁矿体;龙桥铁矿床、大鲍庄铁硫矿床,马口铁矿床、杨山铁矿床和何家大岭铁矿床的生产勘探也揭露了新的成矿地质现象,这些找矿新发现和新突破是庐枞已有成矿模式所无法解释的,也经典“玢岩矿床”成矿模式存在较大差异,因此庐枞盆地铁矿床成矿系统和成矿模式亟待进一步深入研究。本次工作在前人研究的基础上,结合最新的勘查成果,通过野外地质调查、岩心编录以及室内岩相学工作,结合全岩地球化学、同位素地球化学(全岩、单矿物)、同位素年代学、高精度矿物原位微量元素以及同位素测试等多种分析测试手段,对庐枞盆地内龙桥、罗河,大鲍庄、马口、杨山和何家大岭等铁硫矿床开展系统研究,阐明盆地不同类型铁矿床的成矿作用过程,并将它们纳入同一成矿系统,建立庐枞盆地的成矿模式。通过与长江中下游成矿带铁矿床对比,开展成矿带内成铁岩浆岩成矿专属性,膏盐层与铁成矿作用关系以及矿床中磷的来源的方面研究,并探讨铁矿床成矿动力学背景以及成矿带铁铜矿床成矿作用的差异性。论文获得的主要认识和进展如下:前人研究将龙桥铁矿床归为沉积-热液改造型矿床,认为矿区内正长岩是矿床成矿母岩。本次工作在龙桥铁矿床中新发现了闪长岩侵入体,确定其岩性为辉长闪长岩,其成岩时代为133.5±0.8Ma,稍早于矿床中已知的正长岩体。矿床地质特征研究表明,辉长闪长岩与铁成矿作用关系密切,而正长岩为成矿期后破矿岩体。龙桥铁矿床中磁铁矿微量元素分析测试结果表明,靠近辉长闪长岩的磁铁矿具有较高的形成温度(Ti,V含量高)以及较低的水岩反应强度(Mg+Al+Si低),随着远离辉长闪长岩体,磁铁矿形成温度降低,水岩反应作用增强,地层组分加入增多。本文提出龙桥铁矿床属于层控矽卡岩型铁矿床,其中部分铁质可能来源于岩浆流体与赋矿围岩中沉积菱铁矿的水岩反应作用,但主要铁质来源仍为闪长质岩浆。罗河铁矿床总资源量约10亿吨,是成矿带内最大的铁矿床,其火山岩中“二层矿”特征具有鲜明的成矿特色,其相关研究具有重要的找矿勘探价值。本次工作通过对罗河铁矿床系统矿床学研究,确定矿床深部新发现矿体和浅部矿体的赋矿围岩均为强烈蚀变的砖桥组火山岩(粗安岩-辉石粗安岩),明确罗河铁矿床在成因上和深部隐伏闪长质岩浆活动有关。将罗河铁矿床的成矿作用划分为6个阶段,即碱性长石阶段(I)、透辉石-硬石膏-磁铁矿阶段(II)、绿泥石-绿帘石-碳酸盐阶段(III)、硬石膏-黄铁矿阶段(IV)、石英-硫化物阶段(V)以及碳酸盐-硫酸盐阶段(VI)。通过榍石年代学和地球化学研究,确定罗河铁矿床深部和浅部矿体中榍石的形成时代分别为130.0±0.8Ma和129.7±0.8Ma,形成时代相近。榍石微量元素特征指示成矿温度约700-800℃,成矿流体自深部向浅部氧逸度有所升高。两类榍石均具有岩浆榍石轻稀土富集的特征,Nd同位素特征均与赋矿围岩相似,表明深部和浅部矿体为同一成矿作用的产物。罗河铁矿床各阶段典型矿物SHRIMP原位S同位素特征表明,阶段II中黄铁矿的δ34S值为8.2-9.3‰;阶段III中黄铁矿的δ34S值为7.2-11.1‰,其中脉状黄铁矿(7.2-7.4‰)要低于浸染状黄铁矿(8.7-11.1‰);阶段IV黄铁矿的δ34S值为6.2—10.6‰;阶段V中黄铁矿的δ34S值为-2.5—-4.6‰。阶段II硬石膏δ34S值为16.1-17.7‰;阶段IV硬石膏δ34S值为18.3-19.2‰。阶段II,III,IV黄铁矿硫同位素相对稳定,与之共生的硬石膏值也变化较小,而阶段V中黄铁矿硫同位素则呈现出了突然变低的趋势。上述硫同位素特征表明,成矿系统从深部膏盐层持续获得硫酸盐补给,早期硫同位素分馏仅仅受到歧化反应控制,而到了晚期硫酸盐的还原作用导致黄铁矿δ34S值有所升高。罗河铁矿床各阶段典型矿物SHRIMP原位C-O同位素特征表明,阶段II成矿流体δ18Ofluid明显高于岩浆水,δ18Ofluid值在流体演化过程中有两次迅速降低,表明成矿过程中有两次岩浆-热液脉动作用并伴随后期大气水的加入,分别对应阶段IIb和阶段IV硬石膏的大量沉淀;C碳酸盐C-O同位素二元图,大多测试样品δ13C值在-5‰~0‰且δ13C与δ18Ofluid并无相关性,表明矿床流体中的碳源主要来自三叠系沉积地层,氧同位素的降低表明了大气水的加入。罗河铁矿床至少经历了两期深部流体脉动作用,第二次热液脉动温度明显降低,持续时间较短,后期大气降水的大量加入是导致磁铁矿转变为黄铁矿硬石膏组合的关键因素。矿床磁铁矿微量元素具有矽卡岩和IOA型矿床的双重特征。综上所述,罗河铁矿床既不同于典型的矽卡岩型铁矿床,也与典型IOA矿床存在差异,在矿床浅部与斑岩型热液系统具有一定可比性,属于较为特殊的Fe-P-SO42-系统,这里我们暂时将其称之为“非典型”IOA矿床。大鲍庄硫铁矿床由赤铁矿体、黄铁矿体以及硬石膏矿体组成,均产于砖桥组凝灰质火山岩中,具有VMS型矿床的部分地质特征,但其成因一直存在较大争议。本次工作通过系统的矿床地质和黄铁矿SHRIMP原位S同位素和LA-ICP-MS分析,确定矿床中存在四类黄铁矿,不同类型黄铁矿δ34S具有较大的变化范围(-31.4‰~+10.5‰)。凝灰岩中的脉状黄铁矿(type I)δ34S为+9.9‰和+10.5‰;块状矿体中细粒环状或椭圆状黄铁矿(type II)δ34S为-9.2‰~-2.0‰;交代凝灰岩的黄铁矿(type III)δ34S为+3.1‰~+5.3‰;硬石膏胶结物中的自形大颗粒黄铁矿(type IV)δ34S为-29.7‰~-30.4‰;等粒状和板状硬石膏变化范围较窄,为+21.0‰~+21.7‰。Type I黄铁矿具有高Mn、Co、Ni、Zn,低As、Ti、Tl、Sb的特征;type II黄铁矿具有较高的Al、Ti、V、Cu、As、Sb、Te、Tl,而Mn、Zn和Se含量较低;type III黄铁矿具有较高的Mg,Al,V,Ti,且变化范围较大,具有较高的Se,以及较低的Cu,Te;Mn,Zn,As,Sb,Bi,Tl等微量元素含量也是介于type I和type II之间;type IV大多微量元素含量均低于其他三类黄铁矿。上述地质地球化学特征表明,深部初始高温流体含有大量地层硫的加入,type I黄铁矿显示出与罗河铁矿床相似的硫同位素特征;随后喷出的热液与湖水混合,形成沉积黄铁矿(type II),温度不超过300℃;未喷出的流体交代围岩形成浸染状或脉状黄铁矿(type III)。热液活动末期流体活动减弱,温度迅速下降,形成少量type IV黄铁矿。与典型VMS型矿床不同,大鲍庄矿床的硫来自于深部同化而并非海水的混合,属于火山湖喷流沉积型矿床。前人研究认为马口铁矿床正长岩中产出典型的磷灰石-透辉石-磁铁矿“三组合”,属于与正长岩有关的玢岩型铁矿床。本次工作通过系统的矿床学和矿物学和年代学研究工作,确定马口铁矿床成矿母岩为闪长岩,成岩时代为131.2±3.3Ma,石英正长岩体为后期破矿岩体。马口铁矿床成矿母岩的厘定,进一步明确了庐枞盆地铁矿床的岩浆岩成矿专属性。马口铁矿床磁铁矿微量元素特征指示钠长石阶段热液性质接近岩浆水,黄铁矿硫同位素特征指示了矿床内的硫总体来自岩浆硫。在磁铁矿矿化过程中岩浆热液对三叠系地层的同化作用增强,随后从透辉石磁铁矿阶段到石英硫化物阶段,成矿流体中大气水的加入导致温度迅速下降。马口铁矿床的成矿物质来源、矿体特征、矿物组合以及磁铁矿沉淀机制与“梅山式”玢岩铁矿相似。通过对庐枞盆地内不同类型铁矿床中磁铁矿微量元素和同位素的系统对比研究,提出马口热液磁铁矿微量元素变化与典型IOA型矿床磁铁矿岩浆-热液模式相似,氧同位素接近正岩浆磁铁矿;龙桥矽卡岩型矿床磁铁矿微量元素变化趋势与Knipping et al(2015)提出Kiruna型铁矿床磁铁矿成分变化趋势完全不同,磁铁矿氧同位素明显高于岩浆水范围。罗河和杨山铁矿床磁铁矿微量元素变化趋势介于马口和龙桥之间,总体趋势指向IOCG,磁铁矿氧同位素值介于马口和龙桥之间,具有矽卡岩和IOA的双重(过渡)特征。本次研究结果表明庐枞盆地内一系列与岩浆热液有关的铁矿床属于同一成矿系统,成矿作用是一个持续变化的过程,矽卡岩型矿床强烈的水岩反应导致了磁铁矿成分变化趋势在Ti+V vs.Mn+Al图解上更偏向于横向变化。磁铁矿地球化学成分不可能受到严格的限制,与固定的界线相比,利用磁铁矿微量元素的演化趋势去判断矿床类型更为可靠。在对庐枞盆地成铁岩浆岩地球化学特征系统研究的基础上,通过区域对比,本次工作提出长江中下游成矿带铁矿床具有闪长岩质岩浆岩成矿专属性,130Ma左右形成闪长质侵入岩是矽卡岩型及玢岩型铁矿成矿的必要条件,而正长岩类侵入岩形成稍晚,在部分矿区穿切铁矿体,与铁成矿作用无直接关系。庐枞盆地、宁芜盆地和鄂东南地区的成铁岩浆岩的成岩时代和地球化学特征基本一致,岩浆源区为成分接近EMI型富集地幔的交代地幔,岩浆上升过程中受下地壳物质混染较少,更多保留了源区地幔的特征。庐枞盆地内不同类型铁矿床中磷灰石SHRIMP原位O同位素和微量元素特征表明,马口和龙桥铁矿床中辉长闪长岩内的岩浆磷灰石主要为富F、Cl磷灰石,马口热液磷灰石继承了岩浆磷灰石的地球化学特征,而罗河、泥河矿床热液磷灰石具有较高的SO3,指示了庐枞盆地铁成矿体系同化膏盐层具有选择性。岩浆可以大量同化石盐,但对于石膏的同化有限,石膏的加入主要是靠热液的溶解作用。这种同化机制的差异造成了庐枞盆地内岩体侵位深度不同的矿床其矿物组合以及磷灰石地球化学特征具有明显的差异。通过与宿松变质磷灰石特征对比,表明无论是岩体侵位还是热液成矿过程都没有同化已知的基底变质富磷地层。庐枞火山岩盆地中的大多数铁矿床成矿流体在深部与三叠系沉积地层发生了水岩反应,后沿断裂运移到火山岩中形成大量Na-Ca质蚀变,由于矽卡岩矿物发育、CO2逸度较高等因素导致磷灰石发育少于南美。蚀变特征、磁铁矿微量元素特征以及流体氧同位素指示盆地内铁矿床应属于矽卡岩-IOA的过渡部分,与岩浆-热液IOCG矿床中的早期Na-Ca质蚀变相似。以此为基础建立了庐枞盆地铁矿床的综合成矿模式,主要可分为产于三叠系沉积地层中的矽卡岩型铁矿床(龙桥);产于岩体和火山岩接触带的IOA型铁矿床(马口);产于巨厚火山岩中的矽卡岩-IOA型铁矿床(罗河、泥河、杨山);产于中低温氧化条件下的赤铁矿矿床(大岭)以及产于砖桥旋回晚期凝灰岩中的喷流沉积型黄铁矿矿床(大鲍庄)。虽然各个矿床赋存部位有所差异,但均与闪长质岩浆有关,盆地内的铁成矿过程连续而且成因上具有相互联系,是与早白垩世岩浆热液在不同成矿环境和成矿条件的产物。在区域构造和地球物理资料综合分析的基础上,提出长江中下游成矿带为扬子板块和大别造山带之间的前陆盆地系统,庐枞盆地作在前陆系统中应属于地势较低的前缘带,可能为古板块的碰撞缝合部位,其成岩成矿作用受中国东部中生代燕山期地质动力学背景的制约。源区岩浆在152Ma开始活化,至135Ma后,由于古太平洋板块俯冲应力方向有所改变,区域伸展作用加强,构造活化作用导致局部缝合带活化,在135Ma-123Ma之间形成了一系列火山岩盆地及其中以铁为主的矿床。通过对成矿带内成铜岩浆岩和成铁岩浆岩的对比研究,初步提出“深部岩浆演化决定矿种,浅部地层性质决定矿床类型”,并建立了长江中下游成矿带源区构造“双活化”成矿模式。
二、安徽最大铜硫矿床地质概要——论新桥铜硫铁矿床的成因(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、安徽最大铜硫矿床地质概要——论新桥铜硫铁矿床的成因(论文提纲范文)
(1)数据驱动的荞麦山铜硫钨多金属矿床元素迁移富集规律研究及找矿指示(论文提纲范文)
致谢 |
摘要 |
abstract |
第一章 绪论 |
1.1 选题依据及背景 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.2.1 数据驱动理念在地学中的应用 |
1.2.2 地化数据获取方式现状 |
1.2.3 研究区研究现状 |
1.3 研究内容及技术路线 |
1.4 论文主要工作量 |
1.5 主要成果及创新点 |
第二章 研究区地质背景 |
2.1 区域地质背景 |
2.1.1 区域构造 |
2.1.2 区域地层 |
2.2 南宣矿集区地质背景 |
2.2.1 矿集区构造 |
2.2.2 矿集区地层 |
2.2.3 矿集区岩浆岩 |
2.3 矿床地质背景 |
2.3.1 矿床构造 |
2.3.2 矿床地层 |
2.3.3 矿床岩浆岩 |
2.3.4 变质作用及围岩蚀变 |
2.4 本章小结 |
第三章 研究数据获取 |
3.1 岩芯原位数据测试 |
3.2 测试影响因素分析 |
3.2.1 测试点数影响 |
3.2.2 岩芯湿度影响 |
3.3 本章小结 |
第四章 研究方法 |
4.1 数据预处理 |
4.1.1 原始数据筛选 |
4.1.2 数据校准 |
4.2 数据分析方法 |
4.2.1 元素深度空间插值 |
4.2.2 主成分分析 |
4.2.3 元素富集指数 |
4.3 本章小结 |
第五章 荞麦山铜硫矿床元素分布规律及找矿指示 |
5.1 矿床成矿元素分布研究 |
5.1.1 成矿元素的空间分布及蚀变圈定 |
5.1.2 成矿元素之间相关性对矿物的指示 |
5.2 矿床深部元素地球化学特征 |
5.3 主成分分析对岩性信息的提取 |
5.4 变异系数与岩石化学成分差异 |
5.5 矿床元素富集指数 |
5.6 本章小结 |
第六章 结论 |
6.1 结论 |
6.2 存在问题 |
参考文献 |
攻读硕士学位期间的学术活动及成果情况 |
(2)燕山期中酸性岩浆活动与金、铜多金属成矿作用的关系 ——以铜陵、皖北及皖东地区典型矿床为例(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 课题的来源、目的及意义 |
1.1.1 课题来源 |
1.1.2 研究目的 |
1.2 研究意义与选题依据 |
1.3 研究内容及完成工作量 |
1.4 取得主要成果 |
第二章 区域地质背景 |
2.1 铜陵矿集区 |
2.1.1 地层 |
2.1.2 构造 |
2.1.3 岩浆岩 |
2.1.4 区域化探异常 |
2.1.5 区域矿产 |
2.2 皖北蚌埠地区 |
2.2.1 地层 |
2.2.2 构造 |
2.2.3 岩浆岩 |
2.2.4 区域化探异常 |
2.2.5 区域矿产 |
2.3 皖东滁州-马厂一带 |
2.3.1 地层 |
2.3.2 构造 |
2.3.3 岩浆岩 |
2.3.4 区域化探异常 |
2.3.5 区域矿产 |
第三章 分析方法 |
3.1 全岩主微量分析 |
3.2 电子探针分析(EPMA) |
3.3 锆石微量元素、U-Pb同位素和Hf同位素 |
3.4 原位S同位素分析 |
3.5 稳定同位素分析 |
3.6 辉钼矿Re-Os同位素分析 |
3.7 流体包裹体测温与激光拉曼 |
3.8 硫化物原位微量元素分析 |
第四章 典型矿床研究 |
4.1 杨冲里金矿 |
4.1.1 矿床地质特征 |
4.1.2 样品描述 |
4.1.3 测试结果 |
4.1.4 讨论 |
4.2 胡村南铜钼矿 |
4.2.1 矿床地质特征 |
4.2.2 样品描述 |
4.2.3 测试结果 |
4.2.4 讨论 |
4.3 江山金矿 |
4.3.1 矿床地质特征 |
4.3.2 样品描述 |
4.3.3 测试结果 |
4.3.4 讨论 |
4.4 大庙山金矿 |
4.4.1 矿床地质特征 |
4.4.2 样品描述 |
4.4.3 测试结果 |
4.4.4 讨论 |
4.5 构造地质背景 |
4.6 典型矿床成因和成矿模式 |
4.6.1 杨冲里金矿 |
4.6.2 胡村南铜钼矿 |
4.6.3 江山金矿 |
4.6.4 大庙山金矿 |
第五章 区域成矿作用研究 |
5.1 铜陵矿集区 |
5.1.1 区域成矿类型 |
5.1.2 区域成矿控制条件 |
5.1.3 区域矿床成因 |
5.2 皖北蚌埠地区 |
5.2.1 区域成矿类型 |
5.2.2 区域成矿控制条件 |
5.2.3 区域矿床成因 |
5.3 皖东滁州-马厂地区 |
5.3.1 区域成矿类型 |
5.3.2 区域成矿控制条件 |
5.3.3 区域矿床成因 |
5.4 区域成矿作用对比研究 |
第六章 结论 |
附表 |
参考文献 |
致谢 |
在读期间发表的学术论文与取得的其他研究成果 |
(3)长江中下游成矿带铜陵矿集区层控硫化物矿床成因研究进展(论文提纲范文)
1 区域地质背景 |
2 铜陵矿集区地质及矿床特征 |
3 矿集区岩浆岩特征 |
4 成岩成矿时代 |
4.1 锆石U-Pb定年 |
4.2 硫化物Rb-Sr和Re-Os同位素测年 |
5 成矿流体来源 |
6 成矿物质来源 |
6.1 硫同位素 |
6.2 铅同位素及其他 |
7 结语 |
(4)安徽省铜陵凤凰山矿田成矿规律及找矿预测(论文提纲范文)
致谢 |
摘要 |
abstract |
第一章 绪论 |
1.1 研究区范围及自然地理概况 |
1.2 选题依据及意义 |
1.3 工作程度及研究现状 |
1.3.1 基础地质工作程度 |
1.3.2 矿产勘查工作程度 |
1.3.3 研究现状 |
1.4 研究内容 |
1.5 主要实物工作量 |
第二章 区域地质背景 |
2.1 地层 |
2.2 构造 |
2.2.1 基底构造 |
2.2.2 盖层构造 |
2.3 岩浆岩 |
2.4 区域地球物理场特征 |
2.4.1 重力场特征 |
2.4.2 磁场特征 |
2.5 区域地球化学场特征 |
2.6 区域矿产概况 |
第三章 凤凰山矿田地质背景 |
3.1 地层 |
3.1.1 志留系 |
3.1.2 泥盆系 |
3.1.3 石炭系 |
3.1.4 二叠系 |
3.1.5 三叠系 |
3.2 构造 |
3.2.1 褶皱 |
3.2.2 断裂 |
3.2.3 接触带构造 |
3.3 地球物理场特征 |
3.3.1 重磁场基本特征概述 |
3.3.2 重磁异常的划分与分类 |
3.3.3 局部重磁异常解译 |
3.3.4 综合物探剖面解译 |
3.4 地球化学场特征 |
3.5 变质作用与围岩蚀变 |
3.5.1 热变质作用 |
3.5.2 接触交代变质作用 |
3.5.3 围岩蚀变 |
第四章 岩浆岩特征及成因 |
4.1 岩浆岩形态特征 |
4.1.1 浅部形态特征 |
4.1.2 深部形态特征 |
4.2 岩浆岩岩石学特征 |
4.3 岩浆岩年代学特征 |
4.4 岩浆岩岩石化学特征 |
4.5 岩浆岩岩体成因机制 |
第五章 典型矿床地质特征 |
5.1 药园山铜矿 |
5.2 宝山陶铜矿 |
5.3 南阳山铜钼矿 |
5.4 仙人冲铜矿 |
5.5 龙潭肖铜铅锌矿 |
5.6 金泉铅锌矿 |
第六章 矿床地球化学特征及矿床成因 |
6.1 碳-氧同位素 |
6.2 硫同位素 |
6.3 铅同位素 |
6.4 同位素地质年代学 |
6.5 成矿流体来源 |
6.6 成矿物质来源 |
第七章 成矿地质条件及成矿规律 |
7.1 成矿地质条件 |
7.1.1 地层与成矿 |
7.1.2 构造与成矿 |
7.1.3 岩浆岩与成矿 |
7.2 矿床类型 |
7.3 成矿规律 |
7.3.1 空间分布 |
7.3.2 分带性 |
7.3.3 富矿段的控制因素组合类型 |
7.4 成矿模式 |
第八章 综合信息成矿预测与评价 |
8.1 综合信息预测 |
8.1.1 成矿预测图的编制 |
8.1.2 变量的提取和赋值 |
8.1.3 变量特征分析 |
8.2 预测结果 |
8.2.1 评价单元的划分 |
8.2.2 评价单元属性叠加 |
8.2.3 预测结果 |
8.3 靶区圈定及评价 |
8.3.1 靶区圈定 |
8.3.2 一级找矿靶区评价 |
8.3.3 二级找矿靶区评价 |
8.3.4 靶区验证 |
第九章 结论 |
参考文献 |
(5)安徽铜陵新桥铜硫铁矿床地质及矿石矿物特征(论文提纲范文)
1 矿床地质特征 |
2 矿体及矿石矿物学特征 |
2.1 矿体特征 |
2.2 矿石矿物特征 |
3 结论 |
(6)安徽铜陵矿集区中生代侵入岩体年代学研究及其成矿指示意义(论文提纲范文)
1 区域成矿背景 |
2 区域岩浆岩基本特征 |
3 矿床空间分布特征 |
4 样品分析方法与测试结果 |
4.1 样品位置与分析方法 |
4.2 测试结果 |
5 讨论 |
5.1 区内岩浆活动年龄 |
5.2 区内成矿年龄 |
5.3 区内不同成矿时代与成矿侵入体对应关系 |
6 结论 |
(7)青海省滩间山—锡铁山地区金铅锌成矿系统(论文提纲范文)
作者简历 |
摘要 |
abstract |
第一章 绪论 |
1.1 研究区范围与自然地理概况 |
1.2 选题依据及研究意义 |
1.2.1 选题来源及目的 |
1.2.2 研究意义 |
1.3 选题国内外研究现状 |
1.3.1 研究区矿产勘查程度及矿床研究现状 |
1.3.2 成矿系统理论研究现状 |
1.4 研究内容和技术路线 |
1.5 论文完成的主要工作量 |
1.6 主要研究成果与创新点 |
第二章 区域地质背景 |
2.1 区域构造单元 |
2.2 区域地层 |
2.2.1 下元古界达肯大坂岩群(Pt_1DK) |
2.2.2 中元古界沙柳河岩群(Pt_2SL) |
2.2.3 中元古界万洞沟群(Pt_2WD) |
2.2.4 上元古界全吉群(ZQ) |
2.2.5 下古生界 |
2.2.6 上古生界 |
2.2.7 中生界 |
2.2.8 新生界 |
2.3 区域岩浆岩 |
2.3.1 加里东期侵入岩 |
2.3.2 海西期侵入岩 |
2.3.3 印支期侵入岩 |
2.3.4 火山岩 |
2.4 区域构造 |
2.4.1 褶皱构造 |
2.4.2 断裂构造 |
2.5 地球动力学背景 |
第三章 研究区铅锌金成矿系统的划分 |
3.1 成矿系统划分的原则 |
3.2 研究区成矿系统的划分依据 |
3.2.1 加里东期成岩成矿事件 |
3.2.2 海西期成岩成矿事件 |
3.2.3 印支期成岩成矿事件 |
3.3 加里东期成矿系统 |
3.3.1 早加里东期铅锌(铜)成矿亚系统 |
3.3.2 晚加里东期金成矿亚系统 |
3.4 海西期铅锌(铜)成矿系统 |
3.5 印支期金成矿系统 |
第四章 早加里东期铅锌(铜)成矿亚系统典型矿床剖析 |
4.1 锡铁山铅锌矿床地质特征 |
4.1.1 矿区地质概况 |
4.1.2 矿体特征 |
4.1.3 矿石特征 |
4.1.4 围岩蚀变 |
4.1.5 成矿期次 |
4.2 锡铁山铅锌矿床成矿物质来源 |
4.2.1 铅同位素 |
4.2.2 硫同位素 |
4.3 锡铁山铅锌矿床成矿流体特征 |
4.3.1 成矿流体来源 |
4.3.2 流体包裹体特征 |
4.3.3 成矿流体成分 |
4.4 小结 |
第五章 晚加里东期金成矿亚系统典型矿床剖析 |
5.1 青龙沟金矿床地质特征 |
5.1.1 矿区地质概况 |
5.1.2 矿体特征 |
5.1.3 矿石特征 |
5.1.4 围岩蚀变 |
5.1.5 成矿期次 |
5.2 青龙沟金矿床成矿物质来源 |
5.2.1 铅同位素 |
5.2.2 硫同位素 |
5.3 青龙沟金矿床成矿流体特征 |
5.3.1 成矿流体来源 |
5.3.2 流体包裹体特征 |
5.3.3 成矿流体成分 |
5.4 小结 |
第六章 印支期金成矿系统典型矿床剖析 |
6.1 滩间山金矿床地质特征 |
6.1.1 矿区地质概况 |
6.1.2 矿体特征 |
6.1.3 矿石特征 |
6.1.4 围岩蚀变 |
6.1.5 成矿期次 |
6.2 滩间山金矿床成矿物质来源 |
6.2.1 铅同位素 |
6.2.2 硫同位素 |
6.3 滩间山金矿床成矿流体特征 |
6.3.1 成矿流体来源 |
6.3.2 流体包裹体特征 |
6.3.3 成矿流体成分 |
6.4 小结 |
第七章 成矿系统中相关岩浆岩与成矿 |
7.1 与铅锌矿床有关的加里东期火山岩特征 |
7.1.1 岩石建造 |
7.1.2 岩石地球化学特征 |
7.1.3 岩浆岩年代学 |
7.1.4 火山岩源区及成矿构造背景 |
7.1.5 地层层序 |
7.2 与金矿床有关的加里东期-印支期中酸性侵入岩 |
7.2.1 岩石建造 |
7.2.2 岩石地球化学特征 |
7.2.3 侵入岩锆石U-Pb年代学 |
7.2.4 Sr-Nd-Pb-Hf同位素特征 |
7.2.5 岩石成因 |
7.2.6 成岩成矿条件分析 |
7.3 小结 |
第八章 区域成矿系统演化模式及找矿方向 |
8.1 成矿系统的时间演化 |
8.2 成矿系统的空间分布 |
8.3 成矿系统的控矿要素 |
8.3.1 锡铁山铅锌矿床控矿要素 |
8.3.2 滩间山金矿床控矿要素 |
8.4 区域成矿系统演化模式 |
8.5 区域找矿模式及找矿方向 |
8.5.1 锡铁山式铅锌矿找矿模式 |
8.5.2 滩间山式金矿找矿模式 |
8.5.3 区域找矿方向 |
第九章 结论 |
致谢 |
参考文献 |
附录 |
附表 |
(8)铜陵矿集区斑岩-矽卡岩型铜金矿床成矿作用研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
第一章 绪论 |
1.1 选题背景 |
1.2 斑岩Cu矿床研究现状 |
1.2.1 斑岩矿床分类与定义 |
1.2.2 斑岩Cu矿床时空分布特点 |
1.2.3 斑岩矿床的产出背景和保存 |
1.2.4 斑岩矿床成矿机制和控制因素 |
1.2.5 矿物地球化学对斑岩矿床勘查的新认识 |
1.3 与斑岩有关的矽卡岩型铜矿床研究进展 |
1.4 铜陵矿集区斑岩-矽卡岩型矿床研究现状 |
1.5 存在问题 |
1.6 研究内容及方法 |
1.7 完成工作量 |
1.8 创新点 |
第二章 区域地质背景 |
2.1 长江中下游成矿带地质概述 |
2.1.1 大地构造位置 |
2.1.2 地层 |
2.1.3 岩浆岩 |
2.1.4 区域矿产 |
2.2 铜陵矿集区地质概述 |
2.2.1 构造 |
2.2.2 地层 |
2.2.3 岩浆岩 |
2.2.4 矿产 |
第三章 典型斑岩-矽卡岩型矿床地质特征 |
3.1 新桥矿床 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 岩浆岩 |
3.1.4 矿体特征和矿化类型 |
3.1.5 围岩蚀变 |
3.1.6 热液脉体类型及特征成矿阶段 |
3.1.7 成矿阶段及矿物生成顺序 |
3.2 冬瓜山矿床 |
3.2.1 地层 |
3.2.2 构造 |
3.2.3 岩浆岩 |
3.2.4 矿化特征 |
3.2.5 围岩蚀变 |
3.2.6 热液脉体类型及特征 |
3.2.7 成矿阶段及矿物生成顺序 |
第四章 岩浆和热液作用时限 |
4.1 样品特征 |
4.1.1 新桥矿床 |
4.1.2 冬瓜山矿床 |
4.2 分析方法 |
4.3 测试结果 |
4.3.1 新桥矿床 |
4.3.2 冬瓜山矿床 |
4.4 岩浆岩和热液矿化蚀变时限 |
4.4.1 新桥岩浆岩侵位顺序 |
4.4.2 斑岩蚀变与矽卡岩的形成时代 |
4.4.3 斑岩-矽卡岩型矿床完整的岩浆-热液活动时限 |
第五章 岩浆岩性质和成矿差异判别 |
5.1 岩浆岩样品特征 |
5.2 分析方法 |
5.3 岩浆岩副矿物特征 |
5.3.1 锆石矿物学特征和CL特征 |
5.3.2 磷灰石矿物学特征和CL特征 |
5.3.3 锆石微量元素特征 |
5.3.4 磷灰石主量元素特征 |
5.3.5 磷灰石微量元素特征 |
5.4 讨论 |
5.4.1 新桥矿床岩浆岩性质和成矿条件 |
5.4.2 岩浆岩的含矿性对比 |
5.4.3 区域岩浆岩含矿性指示 |
第六章 石榴子石对矽卡岩形成过程的约束 |
6.1 新桥矿床矽卡岩的形成作用 |
6.1.1 新桥矽卡岩分带及特征 |
6.1.2 样品特征和分析方法 |
6.1.3 分析结果 |
6.1.4 讨论 |
6.2 冬瓜山矿床矽卡岩的形成作用 |
6.2.1 冬瓜山矽卡岩分带及特征 |
6.2.2 样品特征及测试方法 |
6.2.3 成分特征 |
6.2.4 讨论 |
6.3 小结 |
第七章 岩浆-热液成矿的精细演化过程 |
7.1 引言 |
7.2 新桥矿床岩浆-热液演化过程 |
7.2.1 矿物学特征 |
7.2.2 成分特征 |
7.2.3 讨论 |
7.3 冬瓜山矿床岩浆-热液演化过程 |
7.3.1 矿物学特征 |
7.3.2 成分特征 |
7.3.3 讨论 |
7.4 小结 |
第八章 层状硫化物矿体成因及来源 |
8.1 引言 |
8.2 层状硫化物矿体地质特征 |
8.3 黄铁矿样品及岩相学特征 |
8.3.1 分析样品特征 |
8.3.2 黄铁矿岩相学特征 |
8.4 黄铁矿成分特征 |
8.4.1 FE-SEM分析结果 |
8.4.2 LA-ICP-MS微量元素成分 |
8.4.3 SHRIMP原位S同位素成分 |
8.5 讨论 |
8.5.1 胶状黄铁矿的生成顺序和形成时代约束 |
8.5.2 胶状黄铁矿成因 |
8.5.3 胶状黄铁矿S的来源 |
8.5.4 层状硫化物矿体的形成机制及成矿物质来源指示 |
第九章 铜陵矿集区斑岩-矽卡岩矿床成矿模式 |
9.1 与俯冲环境斑岩型铜矿床的对比 |
9.1.1 安第斯斑岩型铜矿床成矿作用 |
9.1.2 陆内斑岩-矽卡岩Cu矿与陆缘弧斑岩Cu矿成矿作用差异 |
9.2 铜陵矿集区斑岩-矽卡岩矿床成矿作用 |
9.2.1 成矿地质背景 |
9.2.2 控矿要素 |
9.2.3 岩浆过程和热液成矿过程 |
9.3 铜陵矿集区斑岩-矽卡岩成矿模式 |
第十章 主要结论 |
参考文献 |
附录1 论文缩写代号 |
附录2 论文数据表 |
攻读博士学位期间学术活动及成果情况 |
附件 |
(9)长江中下游成矿带钨的成矿作用研究(论文提纲范文)
致谢 |
摘要 |
ABSTRACT |
第一章 前言 |
1.1 研究现状 |
1.2 存在问题 |
1.3 选题依据及来源 |
1.4 研究目标及内容 |
1.5 论文实物工作量 |
1.6 研究主要成果及创新点 |
第二章 区域地质背景 |
2.1 研究区范围 |
2.2 地质演化简史 |
2.3 地层 |
2.4 构造 |
2.5 岩浆岩 |
2.6 区域矿产 |
第三章 钨矿床地质地球化学特征 |
3.1 东顾山矿床 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 岩浆岩 |
3.1.4 矿化特征 |
3.1.5 围岩蚀变 |
3.1.6 成矿期次 |
3.1.7 流体包裹体 |
3.1.8 脉石矿物主微量元素 |
3.1.9 矿物H、O、S、Pb同位素 |
3.1.10 流体性质与来源 |
3.2 阮家湾矿床 |
3.3 桂林郑矿床 |
3.4 高家塝矿床 |
3.5 其他含白钨矿矿床 |
3.6 小结 |
第四章 钨矿床成岩成矿时代 |
4.1 成岩年龄 |
4.2 成矿年龄 |
4.3 钨成矿时代划分 |
4.4 小结 |
第五章 钨矿床成矿岩体地球化学 |
5.1 钨矿床成矿岩体 |
5.2 岩浆锆石 |
5.3 与钦杭和南岭成矿带对比 |
5.4 岩浆成矿专属性 |
5.5 小结 |
第六章 白钨矿矿物学和地球化学特征 |
6.1 样品采样 |
6.2 白钨矿矿物学特征 |
6.3 白钨矿矿物地球化学特征 |
6.4 成矿流体特征 |
6.5 成矿物质来源 |
6.6 找矿指示矿物(RIM/discriminator) |
6.7 小结 |
第七章 钨矿床成矿模式和成矿规律 |
7.1 钨矿床成矿规律 |
7.1.1 三阶段钨矿床作用 |
7.1.2 空间分布规律 |
7.1.3 基底控矿 |
7.1.4 南钨北扩 |
7.1.5 成矿岩体专属性 |
7.1.6 陆内俯冲成矿 |
7.2 钨矿床成矿模式 |
第八章 结论及存在问题 |
8.1 结论 |
8.2 存在问题 |
参考文献 |
攻读博士学位期间学术活动及成果情况 |
附录 (测试方法) |
(10)安徽庐枞盆地铁矿床成矿系统和成矿模式研究(论文提纲范文)
致谢 |
摘要 |
abstract |
第一章 前言 |
1.1 选题依据及意义 |
1.2 研究现状及存在问题 |
1.2.1 研究现状 |
1.2.2 存在问题 |
1.3 研究内容以及技术路线 |
1.4 论文实物工作量 |
1.5 研究主要成果及创新点 |
第二章 区域地质概况 |
2.1 地层 |
2.2 构造 |
2.2.1 断裂构造 |
2.2.2 褶皱构造 |
2.2.3 火山机构 |
2.3 岩浆岩 |
2.4 区域地质演化 |
2.5 区域矿产 |
第三章 龙桥铁矿床 |
3.1 矿床地质特征 |
3.1.1 地层 |
3.1.2 构造 |
3.1.3 岩浆岩 |
3.1.4 矿体特征及矿石结构构造 |
3.1.5 围岩蚀变及成矿期次 |
3.2 辉长闪长岩岩石学和年代学特征 |
3.2.1 岩石学特征 |
3.2.2 定年结果 |
3.3 辉长闪长岩地球化学特征 |
3.3.1 全岩地球化学特征 |
3.3.2 Sr-Nd-Pb同位素特征 |
3.3.3 岩体磷灰石地球化学特征 |
3.4 磁铁矿地球化学特征 |
3.4.1 磁铁矿矿石全岩分析 |
3.4.2 磁铁矿原位微量元素特征 |
3.4.3 磁铁矿SHRIMP原位O同位素特征 |
3.5 矿床成因 |
3.6 关于矿床类型指示图解的启示 |
第四章 罗河铁矿床 |
4.1 矿床地质特征 |
4.2 成矿年龄 |
4.2.1 样品特征 |
4.2.2 榍石LA-ICP-MS定年结果 |
4.3 矿床地球化学特征 |
4.3.1 蚀变岩全岩地球化学特征 |
4.3.2 榍石主微量元素特征 |
4.3.3 榍石Nd同位素特征 |
4.3.4 磁铁矿原位微量元素特征 |
4.3.5 硬石膏及黄铁矿S同位素特征 |
4.3.6 矿床典型矿物SHRIMP原位C-O同位素特征 |
4.4 矿床成因 |
第五章 大鲍庄黄铁矿床 |
5.1 地质特征 |
5.2 矿床地球化学特征 |
5.2.1 黄铁矿S同位素特征 |
5.2.2 黄铁矿微量元素特征 |
5.3 矿床成因 |
第六章 马口铁矿床 |
6.1 马口铁矿床区域填图 |
6.2 矿化和矿物特征 |
6.3 马口成矿岩体年龄 |
6.4 矿床地球化学特征 |
6.4.1 矿床岩浆岩全岩分析 |
6.4.2 全岩Sr-Nd-Pb同位素特征 |
6.4.3 磁铁矿原位微量元素特征 |
6.4.4 钠长石、磁铁矿和磷灰石SHRIMP原位O同位素特征 |
6.4.5 黄铁矿SHRIMP原位S同位素特征 |
6.5 矿床成因 |
第七章 杨山铁矿床 |
7.1 杨山地质特征 |
7.2 矿床地球化学特征 |
7.2.1 磁铁矿原位微量元素特征 |
7.2.2 磁铁矿SHRIMP原位O同位素特征 |
7.3 矿床成因 |
7.4 磁铁矿出溶对微量元素测试的影响 |
第八章 何家大岭铁矿床 |
8.1 地质特征 |
8.1.1 地层 |
8.1.2 构造 |
8.1.3 岩浆岩 |
8.1.4 矿体特征 |
8.1.5 矿石特征 |
8.1.6 围岩蚀变 |
8.2 矿床地球化学特征 |
8.2.1 赤铁矿原位微量元素特征及指示意义 |
8.2.2 赤铁矿O同位素特征及指示意义 |
8.2.3 黄铁矿S同位素特征及指示意义 |
8.3 成矿作用和矿床成因 |
第九章 成矿作用和成矿模式 |
9.1 成矿物质来源 |
9.1.1 成矿岩浆岩专属性 |
9.1.2 矿床中的钠化蚀变岩与正长岩 |
9.1.3 泥河铁矿床赋矿围岩岩性 |
9.1.4 蚀变矿化物质来源 |
9.2 成矿流体特征和成矿作用过程 |
9.2.1 水岩反应对流体性质的影响 |
9.2.2 成矿过程 |
9.3 成矿模式 |
9.4 与铜矿化岩浆专属性的对比 |
9.5 地质动力学背景 |
9.5.1 前陆盆地系统 |
9.5.2 “双活化”作用对铁成矿作用的影响 |
9.5.3 长江中下游成矿带铁铜成矿特色的原因 |
第十章 主要结论及研究展望 |
10.1 主要结论 |
10.2 研究展望 |
参考文献 |
攻读博士学位期间学术活动及成果情况 |
附录1 样品制备及分析方法 |
四、安徽最大铜硫矿床地质概要——论新桥铜硫铁矿床的成因(论文参考文献)
- [1]数据驱动的荞麦山铜硫钨多金属矿床元素迁移富集规律研究及找矿指示[D]. 周国玉. 合肥工业大学, 2021
- [2]燕山期中酸性岩浆活动与金、铜多金属成矿作用的关系 ——以铜陵、皖北及皖东地区典型矿床为例[D]. 施珂. 中国科学技术大学, 2021
- [3]长江中下游成矿带铜陵矿集区层控硫化物矿床成因研究进展[J]. 陈一秀,杨丹. 矿床地质, 2021(01)
- [4]安徽省铜陵凤凰山矿田成矿规律及找矿预测[D]. 单士锋. 合肥工业大学, 2020(02)
- [5]安徽铜陵新桥铜硫铁矿床地质及矿石矿物特征[J]. 马宏. 世界有色金属, 2019(09)
- [6]安徽铜陵矿集区中生代侵入岩体年代学研究及其成矿指示意义[J]. 施珂,杜建国,万秋,陈芳,蔡杨,曹荆亚,吴礼彬,王利民,谭德兴. 地质学报, 2019(05)
- [7]青海省滩间山—锡铁山地区金铅锌成矿系统[D]. 戴荔果. 中国地质大学, 2019(02)
- [8]铜陵矿集区斑岩-矽卡岩型铜金矿床成矿作用研究[D]. 肖鑫. 合肥工业大学, 2019
- [9]长江中下游成矿带钨的成矿作用研究[D]. 聂利青. 合肥工业大学, 2019
- [10]安徽庐枞盆地铁矿床成矿系统和成矿模式研究[D]. 刘一男. 合肥工业大学, 2019